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ABSTRACT  

We introduce a novel remote volume rendering pipeline for medical visualization targeted for mHealth (mobile health) 

applications. The necessity of such a pipeline stems from the large size of the medical imaging data produced by current 

CT and MRI scanners with respect to the complexity of the volumetric rendering algorithms. For example, the resolution 

of typical CT Angiography (CTA) data easily reaches 512^3 voxels and can exceed 6 gigabytes in size by spanning over 

the time domain while capturing a beating heart. This explosion in data size makes data transfers to mobile devices 

challenging, and even when the transfer problem is resolved the rendering performance of the device still remains a 

bottleneck. To deal with this issue, we propose a thin-client architecture, where the entirety of the data resides on a 

remote server where the image is rendered and then streamed to the client mobile device.  We utilize the display and 

interaction capabilities of the mobile device, while performing interactive volume rendering on a server capable of 

handling large datasets. Specifically, upon user interaction the volume is rendered on the server and encoded into an 

H.264 video stream. H.264 is ubiquitously hardware accelerated, resulting in faster compression and lower power 

requirements. The choice of low-latency CPU- and GPU-based encoders is particularly important in enabling the 

interactive nature of our system.  We demonstrate a prototype of our framework using various medical datasets on 

commodity tablet devices.  
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1. DESCRIPTION OF PURPOSE  

With widely available wireless network connectivity, the proliferation of mobile devices, and the constant increase in the 

graphics processing power, it is intuitive to remotely process large amounts of medical imaging data on the powerful 

server, while allowing fast and responsive streaming to mobile devices.  The development of these components 

individually, enables the framework presented in this paper, which is significantly advanced when compared to previous 

attempts of remote rendering [1,2].  

First, we consider the server side for the processing of medical data that is essentially the driving force in our system. 

The commodization of GPUs has resulted in the development of clustered visualization applications. While many of 

those applications involve off-line rendering, for example when dealing with very large scientific datasets or complex 

movie scenes, remote visualization has been used in certain interactive applications as well. One such example is cloud-

based gaming services, where high-quality images are generated in a data center, streamed over a network connection, 

and the user controls the game on the client side. 

Secondly, due to the significant increase in the role of mobile computing over the past few years, we are able to consider 

advanced mobile devices as suitable clients for our system architecture.  Current mobile devices, including various 

smartphones and tablet devices, have powerful CPU and GPU characteristics that make them suitable platforms for 

various mHealth applications. Their configuration, computing capability, display quality and resolution are comparable 

to desktop counterparts available only a few years ago. However, due to the large amount of volumetric data, 

transferring the data and rendering it entirely on the device is not always possible [3,4]. The portability and always-on 

connectivity of these devices allows our system to stream images rendered on the server to the mobile device, and 

permits a medical doctor or health care professional to conduct the diagnostic process and follow up without being 



 

 
 

 

constrained to a workstation computer in the hospital facility.  Therefore, mobile devices are extremely promising as the 

client side for a remote volume rendering framework. 

We leverage this technology to provide high-quality volume rendering targeted at the medical applications on low-power 

mobile devices. This framework has not been presented or published elsewhere. The main contributions of this work are: 

 Fast remote volume rendering pipeline for mHealth applications capable of handling large volumetric datasets 

(up to 20483); 

 High quality responsive streaming synthesized to mobile clients, using hardware-accelerated encoding and 

decoding techniques; 

 Evaluation on mobile health applications such as Computed Tomography (CT) colonography, exploration of 

other large CT datasets.  

2. METHOD 

Our remote volume rendering system is an extension of our existing distributed visualization software and offers a 

variety of configurations.  In the case of remote volume rendering, the two principal components of our system are the 

image-generating server and a thin client that accepts and transmits user input and also streams images from the server. 

In this section, we outline the implementation details of each component. 

2.1 Server Implementation Details 

The server component implements a volume rendering pipeline that supports a variety of modalities (raycasting, texture 

slicing, 1D and 2D transfer functions, different compositing methods, etc). The server can operate in local mode, 

outputting the final image directly to the screen. For remote rendering, the server instead operates in off-screen mode. In 

this configuration, the server instead outputs the rendering result to a texture, via an OpenGL framebuffer object (FBO). 

Additionally, in this mode of operation, the server renders at a fixed internal resolution, rather than resizing the OpenGL 

viewport based on the size of the on-screen window. Also, the aspect ratio of the rendering is decoupled from the on-

screen window and is instead transmitted to the server by the client application on startup and when changes in the 

client’s window size occur. The remainder of the volume rendering pipeline is agnostic to the server’s mode of 

operation. 

In the final stage of the image synthesis kernel, the server performs a color-space conversion from the RGB output to 

YUV 4:2:0 on the GPU. YUV 4:2:0 is ubiquitously accepted as an input color space for a number of hardware-

accelerated H.264 encoders. In our system’s case, the NVENC (for modern Kepler GPUs) also supports the YUV 4:4:4 

format that preservers the color at full resolution. Finally, the server reconverts the volume rendering result to RGB in a 

rapid, screen-space, pass and displays it locally for debug and visualization purposes. 

The color-transformed framebuffer is passed on to the encoder subsystem for conversion into an H.264 video stream. 

This subsystem supports the NVCUVENC and NVENC [8] video encoders, which allow for performant coding of the 

images on the GPU. The video stream is exposed over the Real-Time Streaming Protocol (RTSP), implemented using 

the LIVE555 library [9]. A side-benefit of this approach is that the visualization session can be observed not only by the 

client application (outlined below), but also by almost any commodity device with media streaming support (such as an 

ARM-based smartphone). A disadvantage of RTSP-based streaming is the fact that it does not leverage the resiliency 

features of NVENC. We plan on developing a custom streaming protocol that takes advantage of these features, 

permitting clients to notify the server of transmission errors. In this situation, future frames would be encoded without  



 

 
 

 

 

 

Figure 1: Block diagram outlining the connectivity and flow of data between components of our volume rendering pipeline. Blocks 

and arrows in orange relate to the streaming of volume renderings over an H.264 video stream, while the command infrastructure is 

represented in yellow. User-facing inputs and components are annotated in blue. 

references to past corrupted frames. In our current implementation, RTSP provides resiliency to such network 

transmission errors at the expense of input latency. 

Finally, the server application instantiates a TCP/IP server, listening for incoming connections on a predetermined port. 

Successful connection establishes a command link between the server and a single client instance, over which command 

packets are exchanged. Incoming packets are processed based on a header byte, with different headers denoting packets 

of different content. Our system decouples the transmission of different aspects of the render state in order to reduce 

network overhead. For example, manipulating the virtual camera results in only those parameters being transmitted to 

the server (rather than communicating the entire render state, including compositing settings, transfer functions, etc.). It 

is also worth noting that even a single camera manipulation can generate tens of command packets. Rather than 

repainting the scene once for every incoming command packet, the server maintains a steady refresh rate (30 or 60 

frames per second in our implementation) and each frame is generated using the aggregate information from all 

command packets received up to that point in time. 

 

2.2 Client Implementation Details 

The client component of our system presents a graphical user interface to the user that is visually indistinguishable from 

a server instance running in local mode. All relevant volume rendering functionality is exposed via mouse, keyboard and 

multi-touch interaction modalities. The client maintains a local copy of the render state variables and transmits the 

appropriate command packets when parts of the state are affected over TCP/IP. 

The key subsystem of the client is an H.264 network streaming client, implemented using LibVLC [10]. The utilization of 

this pervasive media playback framework allows for hardware acceleration of H.264 decoding on certain hardware 

platforms via the following APIs: 



 

 
 

 

 Intel Media SDK [11] – interfaces with the Intel GPUs available in x86 tablets, such as the Microsoft Surface. 

The SDK provides hardware-accelerated H.264 decoding and integrates with OpenCL to provide additional 

processing of the video stream on the client. One major disadvantage is that this SDK is a hybrid system with 

major computation load on CPU. 

 NVCUVID [8] – library for accessing the video decoding functionality of NVIDIA GPUs. Depending on the 

GPU capabilities, the decoding may be implemented in the CUDA language, or using power-efficient on-board 

hardware. The resulting images can be further processed in CUDA or combined with client-based rendering in 

OpenGL. 

The decoded framebuffer is presented to the application in YUV format, which is color-converted to RGB on the GPU 

via an OpenGL 2.0 pixel shader and then presented to the user. This color-space conversion is the most advanced GPU 

feature required by the client application and it is supported on all x86-compatible integrated GPUs that have been 

released in recent years. Consequently, the client application can be executed on a vast range of devices and poses 

minimal hardware requirements. A block diagram illustrating the architecture of our mobile volume rendering pipeline 

can be seen in Figure 1. 

3. RESULTS 

Our volume rendering system supports a variety of visualization techniques, which are also available during video 

streaming. We focus our evaluation specifically on features that cannot be implemented on low-powered devices as 

follows: 

 Smoother rendering during interaction – Mobile devices often struggle with rendering volumes at high screen 

resolutions. The visuals of some immersive interactive applications, such as Virtual Colonoscopy, cover the entire 

viewport the majority of time, making local rendering option unattractive. Contrarily, our client-server approach is 

not constrained in this way. 

 Higher-order reconstruction filter – we use a cubic filter that is 3 times more expensive than the standard trilinear 

filter, but provides a higher image quality. The usage of such a filter would be prohibitive when rendering locally on 

a mobile device.  

 Large datasets – our system handles volumes up to 2048^3 at interactive rendering speeds. Rendering such volumes 

locally on a mobile device would be very difficult, due to space and bandwidth constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                   (b) 

   Figure 2: Remote visualization of (a) CT colonography and (b) CT lung volume data. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                   (b) 

   Figure 3: Remote visualization of the Visible Human dataset with (a) a full body view and (b) a sagittal view. 

Our evaluation is performed on the following hardware: cluster of 6 Dell Precision T7600 workstations with dual 6-core 

CPUs, 64GB of memory and NVIDIA Quadro K5000 GPU as server; and IBM Thinkpad X41 tablet as client. The tablet 

is significantly slower than modern devices and does not offer any hardware video decoding support. However, it was 

chosen purposely to show that our framework is not constrained to the latest mobile devices as clients.  

We evaluate the results based on several potential applications. The prototype of a CT Colonography (Virtual 

Colonoscopy) applications (such as [5,6]) is evaluated and shown in Figure 2(a). The volume rendering is performed on 

the server side, encoded in the H.264 format and streamed to the client side tablet device. The interactive exploration of 

the lung data is shown on the Figure 2(b). The data resolution is 512x512x431 which still allows us to provide a 60 fps 

video stream even with the high order reconstruction filter. The transfer function is optimized for visualization of the 

colon wall, yet it also segments the lung structures.  

Figure 3 shows snapshots of the interactive exploration of the Visible Human [7], which is a 512x512x1877 volumetric 

dataset. The NVIDIA Quadro K5000 in the server side can provide smooth interaction for the visualization under a 

variety of rendering modes (isosurface rendering of the skin and visualization of internal tissues). Figure 4 illustrates 

interaction of the user with a client device allowing her to change parameters of the visualization.  

                      
(a)                                                                                   (b) 

Figure 4: Remote visualization of the cardiac dataset. (a) 1D transfer function editing on the client. (b) Clipping plane positioning on 

the client. 



 

 
 

 

 

 
Figure 5: Left: Chart summarizing our network bandwidth utilization benchmark. Right: View of our test system, showing a Microsoft 
Surface tablet device and a high-end workstation, running the client and server components of our system with synchronized views. 

 

Additionally, we measured the network bandwidth required for transmitting the H.264 stream, as a factor of the internal 

rendering resolution of the server. For this benchmark, we utilized a higher-end tablet device (Microsoft Surface) that 

would benefit from the additional detail of increased rendering resolutions, due to its 1080p display. We ensured that the 

synthesized image covered the majority of the view frustum and applied a colorful transfer function to the volume (in 

order to introduce some entropy to the chroma channels of the framebuffer). We observed a mostly linear increase in 

bandwidth utilization. For an optimal rendering resolution of 1024^2, we recorded an average bandwidth utilization of 

approximately 12 megabits / second, while rendering at 30fps. It is worth noting that for higher rendering resolutions 

(such as 2048^2), network utilization actually drops, as the server is not able to generate frames at a high-enough 

framerate for particular rendering settings. Our measurements, along with an illustration of the benchmark setup are 

visible in Figure 5. 

4. CONCLUSIONS 

In this paper, we demonstrate a remote volume rendering system that leverages high-end workstations to generate the 

images based on user input and to also encode and stream the results in the H.264 video format to a mobile device. The 

volume rendering image synthesis happens on the server side, on a dedicated workstation or GPU cluster. Our system 

can generate multiple views of the volume data, and supports multiple video streams with different bitrates and 

resolutions for different client devices. Visualization clients can interface with a session either via a commodity media 

streamer (without support for user interaction) or through a thin-client application that exposes the full user interface and 

transmits inputs via TCP/IP. Our prototype system can handle various large and complex volume data and provide high 

quality volume rendering at real-time speeds.  

 

Looking forward, we are expanding our remote rendering framework in two ways. First of all, we are exploring novel 

techniques for natural interaction with the volumetric visualization (such as augmented reality and various forms of 

gestural interaction). Additionally, we are investigating various avenues for further increasing the rendering performance 

on the client side and reducing the network overhead associated with H.264 streaming. For example, our current pipeline 

performs the volume rendering at a fixed internal resolution, which remains constant throughout the session. We are 

investigating adaptive rendering schemes that dynamically adjust the volume rendering resolution based on available 

bandwidth and the complexity of the image. 
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