Deformable Segmentation using Sparse Shape Representation

Shaoting Zhang

Computational Biomedicine Imaging & Modeling Center

Outline

- Introduction
- Our methods
 - Segmentation framework
 - Sparse shape representation
- Applications
 - 2D lung localization in X-ray
 - 3D liver segmentation in whole body PET-CT
 - 3D rat brain structure segmentation
- Conclusions

Introduction Motivations

- Segmentation (i.e., finding 2D/3D ROI) is a fundamental problem in medical image analysis.
- We use deformable models and shape prior. Shape representation is based on landmarks.

Rat brain structure in MR Microscopy

3

Introduction Challenges – deformable segmentation

- Good segmentation system:
 - Automatic, accuracy, efficiency, robustness.
 - Handle weak or misleading appearance cues from image information.
 - Discover or preserve complex shape details.

Introduction Challenges – shape prior modeling

- Good shape prior method:
 - Handle gross errors of the input data.
 - Model complex shape variations.
 - Preserve local shape details.

Methods Our solutions

- Learning based deformable segmentation.
- Sophisticated shape prior algorithm.
 - Sparse shape composition.

Shape prior using sparse shape composition

- Our method is based on two observations:
 - An input shape can be approximately represented by a sparse linear combination of training shapes.
 - The given shape information may contain gross errors, but such errors are often sparse.

Shape prior using sparse shape composition

- Formulation:
 - $Min_{\{x,\beta\}} \|T(y,\beta) Dx\|_2$
- Sparse linear combination:
 - $Min_{\{x,\beta\}} \|T(y,\beta) Dx\|_2, s.t. \|x\|_0 < k_1$

Number of nonzero

elements

Shape prior using sparse shape composition

- Non-Gaussian errors:
 - $-Min_{\{x,e,\beta\}} \|T(y,\beta) Dx e\|_2, s.t. \|x\|_0 < k_1, \|e\|_0 < k_2$

Shape prior using sparse shape composition

- Why it works?
 - <u>Robust</u>: Explicitly modeling "e" with L0 norm constraint. Thus it can detect gross (sparse) errors.
 - <u>General</u>: No assumption of a parametric distribution model (e.g., a unimodal distribution assumption in ASM).
 Thus it can model complex shape statistics.
 - <u>Lossless</u>: It uses all training shapes. Thus it is able to recover detail information even if the detail is not statistically significant in training data.

- Setting:
 - Manually select landmarks for training purpose.
 - 200 training and 167 testing.
 - To locate the lung, detect landmarks, then predict a shape to fit them.
 - Sensitivity (P), Specificity (Q),
 Dice Similarity Coefficient.

• Handling gross errors

• Multimodal distribution

Q%

DSC%

Detection	PA	ASM/RASM	NN	TPS	Sparse1	Sparse2
Р%	50	61	63	75	73	92

• Recover local detail information

Detection	PA	ASM/RASM	NN	TPS	Sparse1	Sparse2
Р%	93	93	87	97	97	98
Q%	99	99	99	98	99	99
DSC%	94	95	90	94	96	96

• Sparse shape components

0.5760

0.2156

• ASM modes:

• Mean values (μ) and standard deviations (σ).

• Setting

- 3D low-dose CT, low contrast and fuzzy boundaries. 40 training and 27 testing.
- Use 3D Slicer to segment ground truth.
- Geometry processing (decimation, smoothing, isotropic remeshing).
- Use shape registration to guarantee one-to-one correspondence.

Zhang, Uzunbas, Yan, Gao, Huang, Metaxas, FIMH'11

Applications – Part II

3D liver segmentation in low-dose CT

Procrustes analysis Sparse shape

Procrustes analysis Sparse shape

Procrustes Sparse shape analysis

Procrustes analysis Sparse shape

• Quantitative comparisons: surface distances.

- Setting
 - Rodents are often used as models of human disease.
 - 3D Magnetic resonance microscopy (MRM).
 - Create complex shape atlas of multiple structures using hierarchical shape priors.

Hierarchical shape prior

Hierarchical shape prior

Hierarchical shape prior

Applications – Part III

3D rodent brain segmentation in MRM

• Quantitative comparisons: surface distances, relative error of volume magnitude

Structures	Methods	Distance	Volume	
	Smoothness prior	4.35±2.17	0.22±0.12	
Cerebellum	Independent prior	1.74±1.18	0.05±0.02	
	Hierarchical prior	1.70±1.13	0.04±0.02	
	Smoothness prior	3.79±2.05	0.51±0.19	
Striatum	Independent prior	2.93±1.81	0.19±0.06	
	Hierarchical prior	1.37±1.09	0.07±0.03	
	Smoothness prior	3.82±2.14	0.53±0.18	
Hippocampus	Independent prior	2.69±1.83	0.17±0.05	
	Hierarchical prior	1.22±1.05	0.06±0.02	

Thanks! Questions and comments