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Introduction 
Motivations 

• Segmentation (i.e., finding 2D/3D ROI) is a 
fundamental problem in medical image analysis. 

• We use deformable models and shape prior. 
Shape representation is based on landmarks. 

Chest X-ray 

Lung CAD 

Liver in low-dose 
whole-body CT 

Rat brain structure in 
MR Microscopy 
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Introduction 
Challenges – deformable segmentation 

• Good segmentation system: 

– Automatic, accuracy, 
efficiency,  robustness. 

– Handle weak or misleading 
appearance cues from 
image information. 

– Discover or preserve 
complex shape details. 

 

Segmentation 
system 
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Introduction 
Challenges – shape prior modeling 

• Good shape prior method: 

– Handle gross errors of the input data. 

– Model complex shape variations. 

– Preserve local shape details. 
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Methods 
Our solutions 

• Learning based deformable segmentation. 

• Sophisticated shape prior algorithm. 

– Sparse shape composition. 

... 

≈ 
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Methods 
Shape prior using sparse shape composition  

• Our method is based on two observations: 

– An input shape can be approximately represented by a 
sparse linear combination of training shapes. 

– The given shape information may contain gross errors, but 
such errors are often sparse. 

... 

≈ 
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Methods 
Shape prior using sparse shape composition  

• Formulation: 
–   

• Sparse linear combination: 

–   

... 

≈ 
... 

≈ 

Dense x Sparse x Aligned data matrix D 
Weight x 

Input y 

Global transformation 
parameter 

Number of nonzero 
elements 
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Methods 
Shape prior using sparse shape composition  

• Non-Gaussian errors: 
–   
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Methods 
Shape prior using sparse shape composition  

• Why it works? 

– Robust: Explicitly modeling “e” with L0 norm constraint. 
Thus it can detect gross (sparse) errors. 

– General: No assumption of a parametric distribution 
model (e.g., a unimodal distribution assumption in ASM). 
Thus it can model complex shape statistics. 

– Lossless: It uses all training shapes. Thus it is able to 
recover detail information even if the detail is not 
statistically significant in training data. 

 

Zhang, Metaxas, et.al.: MedIA’11 
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Applications – Part I 
2D lung localization in X-ray 

• Setting: 

– Manually select landmarks for 
training purpose. 

– 200 training and 167 testing. 

– To locate the lung, detect 
landmarks, then predict a 
shape to fit them. 

– Sensitivity (P), Specificity (Q), 
Dice Similarity Coefficient. 
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Applications – Part I  
2D lung localization in X-ray 

• Handling gross errors 

Detection        PA               ASM          RASM           NN              TPS          Sparse1     Sparse2 

P% 62 66 81 81 59 63 87 

Q% 99 99 99 99 99 98 99 

DSC% 76 78 88 87 74 71 91 Procrustes analysis Active Shape Model Robust ASM Nearest Neighbors Thin-plate-spline Without modeling “e” 
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Proposed method 



Applications – Part I 
2D lung localization in X-ray 

• Multimodal distribution 

Detection             PA          ASM/RASM         NN                 TPS             Sparse1        Sparse2 

P% 50 61 63 75 73 92 

Q% 99 99 98 99 99 99 

DSC% 64 72 73 79 79 91 
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Applications – Part I 
2D lung localization in X-ray 

• Recover local detail information 

Detection             PA          ASM/RASM          NN                 TPS            Sparse1        Sparse2 

P% 93 93 87 97 97 98 

Q% 99 99 99 98 99 99 

DSC% 94 95 90 94 96 96 
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Applications – Part I 
2D lung localization in X-ray 

• Sparse shape components 

 

 

 

 

• ASM modes: 
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Applications – Part I 
2D lung localization in X-ray 

• Mean values (µ) and standard deviations (σ).  

Left lung 

Right lung 

1)PA, 2)ASM, 3)RASM, 4)NN, 5)TPS, 6)Sparse1, 7)Sparse2 

µ σ 
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Applications – Part II 
3D liver segmentation in low-dose CT   

• Setting 
– 3D low-dose CT, low contrast 

and fuzzy boundaries. 40 
training and 27 testing. 

– Use 3D Slicer to segment 
ground truth. 

– Geometry processing 
(decimation, smoothing, 
isotropic remeshing). 

– Use shape registration to 
guarantee one-to-one 
correspondence. 

 

Decimation 
Detail 

Preserved 
Smoothing 

Isotropic 
remesher 

… 

Zhang, Wang, Chen, Metaxas, Axel, ISBI’09 
Zhang, Uzunbas, Yan, Gao, Huang, Metaxas, FIMH’11 
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Applications – Part II 
3D liver segmentation in low-dose CT  

Procrustes 
analysis Sparse shape Ground truth 

Initialization 

Deformation 
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Same landmarks + different shape priors 

Same deformation module 



Applications – Part II 
3D liver segmentation in low-dose CT  
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Procrustes 
analysis 

Sparse shape 



Applications – Part II 
3D liver segmentation in low-dose CT  
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Procrustes 
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Applications – Part II 
3D liver segmentation in low-dose CT  
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Procrustes 
analysis 

Sparse shape 



Applications – Part II 
3D liver segmentation in low-dose CT  
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Procrustes 
analysis 

Sparse shape 



Applications – Part II 
3D liver segmentation in low-dose CT  

 

ASM 2.16±1.68 

NN 3.82±3.12 

TPS 3.39±3.16 

Sparse1 (no e) 2.24±1.70 

Sparse2 1.13±0.83 

• Quantitative comparisons: surface distances. 

Mean value and standard deviation (voxel) 
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Applications – Part III 
3D rodent brain segmentation in MRM  

• Setting 

– Rodents are often used as 
models of human disease. 

– 3D Magnetic resonance 
microscopy (MRM). 

– Create complex shape atlas 
of multiple structures using 
hierarchical shape priors. 
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Applications – Part III 
3D rodent brain segmentation in MRM  

Regular prior  
(smoothness) 

Hierarchical  
shape prior 

Cerebellum Striatum Hippocampus 
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Applications – Part III 
3D rodent brain segmentation in MRM  
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Regular prior (smoothness) 

Hierarchical shape prior 



Applications – Part III 
3D rodent brain segmentation in MRM  
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Regular prior (smoothness) 

Hierarchical shape prior 



Applications – Part III 
3D rodent brain segmentation in MRM  

• Quantitative comparisons: surface distances, relative 
error of volume magnitude 

Structures Methods Distance Volume 

 
Cerebellum 

Smoothness prior 4.35±2.17 0.22±0.12 

Independent prior 1.74±1.18 0.05±0.02 

Hierarchical prior 1.70±1.13 0.04±0.02 

 
Striatum 

Smoothness prior 3.79±2.05 0.51±0.19 

Independent prior 2.93±1.81 0.19±0.06 

Hierarchical prior 1.37±1.09 0.07±0.03 

 
Hippocampus 

Smoothness prior 3.82±2.14 0.53±0.18 

Independent prior 2.69±1.83 0.17±0.05 

Hierarchical prior 1.22±1.05 0.06±0.02 
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Thanks! 
Questions and comments 
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