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Introduction
Motivations

e Segmentation (i.e., finding 2D/3D ROI) is a
fundamental problem in medical image analysis.

* We use deformable models and shape prior.
Shape representation is based on landmarks.
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Introduction
Challenges — deformable segmentation

* Good segmentation system:

— Automatic, accuracy,
efficiency, robustness.

— Handle weak or misleading
appearance cues from
image information.

— Discover or preserve
complex shape details.




Introduction
Challenges — shape prior modeling

* Good shape prior method:
— Handle gross errors of the input data.
— Model complex shape variations.
— Preserve local shape details.




Methods

Our solutions

* Learning based deformable segmentation.

* Sophisticated shape prior algorithm.
— Sparse shape composition.




Methods

Shape prior using sparse shape composition

e QOur method is based on two observations:

— An input shape can be approximately represented by a
sparse linear combination of training shapes.

— The given shape information may contain gross errors, but
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Methods

Shape prior using sparse shape composition

e Formulation:
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Methods

Shape prior using sparse shape composition

e Non-Gaussian errors:
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Methods

Shape prior using sparse shape composition

* Why it works?

— Robust: Explicitly modeling “e” with LO norm constraint.
Thus it can detect gross (sparse) errors.

— General: No assumption of a parametric distribution
model (e.g., a unimodal distribution assumption in ASM).
Thus it can model complex shape statistics.

— Lossless: It uses all training shapes. Thus it is able to
recover detail information even if the detail is not
statistically significant in training data.

Zhang, Metaxas, et.al.: MedIA'11
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Applications — Part |

2D lung localization in X-ray

e Setting:
— Manually select landmarks for
training purpose.
— 200 training and 167 testing.

— To locate the lung, detect
landmarks, then predict a
shape to fit them.

— Sensitivity (P), Specificity (Q),
Dice Similarity Coefficient.
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Applications — Part |

2D lung localization in X-ray

e Handling gross errors
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Applications — Part |

2D lung localization in X-ray

e Multimodal distribution
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Detection PA ASM/RASM NN TPS Sparsel Sparse?2
P% 50 61 63 75 73 92
Q% 99 99 98 99 99 99
DSC% 64 72 73 79 79 91
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Applications — Part |

2D lung localization in X-ray

e Recover local detail information

Detection PA ASM/RASM NN TPS Sparsel Sparse?2

P% 93 93 87 97 97 98
Q% 99 99 99 98 99 99
DSC% 94 95 90 94 96 96
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e Sparse shape comp

Applications — Part |

2D lung localization in X-ray
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Applications — Part |

2D lung localization in X-ray

e Mean values (1) and standard deviations (o).

100
95
a0
Left lung
85

80

75

Right lung

Sensitivity (P%)

_ (©DSCY

Specificity (Q%) .

a0

i
A
1

97

1T 2 3 4 5 6 7

96

1 2 3 4 5 6 7

Bﬂ

1)PA, 2)ASM, 3)RASM, 4)NN, 5)TPS, 6)Sparsel, 7)Sparse2



e Setting

Applications — Part I

3D liver segmentation in low-dose CT

> 30Slicer

3D low-dose CT, low contrast ——
and fuzzy boundaries. 40
training and 27 testing.

Use 3D Slicer to segment
ground truth.
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Geometry processing
(decimation, smoothing,
isotropic remeshing).
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Use shape registration to
guarantee one-to-one
correspondence.

Zhang, War
Zhang, Uzunbas, Yan, Gao, Huang, Metaxas, FIMH’11
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Applications — Part Il

3D liver segmentation in low-dose CT
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Same landmarks + different shape priors

Procrustes
analysis Sparse shape Ground truth
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Same deformation module }
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Applications — Part I

3D liver segmentation in low-dose CT

Procrustes

~~~ Sparse shape
analysis
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Applications — Part I

3D liver segmentation in low-dose CT

Procrustes

~~~ Sparse shape
analysis
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Applications — Part I

3D liver segmentation in low-dose CT
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Applications — Part I

3D liver segmentation in low-dose CT
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Applications — Part I

3D liver segmentation in low-dose CT

e Quantitative comparisons: surface distances.
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Applications — Part Ill

3D rodent brain segmentation in MRM

e Setting
— Rodents are often used as
models of human disease.

— 3D Magnetic resonance
microscopy (MRM).

— Create complex shape atlas
of multiple structures using
hierarchical shape priors.
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Applications — Part Il

3D rodent brain segmentation in MRM

Cerebellum Striatum Hippocampus

Regular prior
(smoothness)

Hierarchical
shape prior
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Applications — Part Ill

3D rodent brain segmentation in MRM

Regular prior (smoothness)

Hierarchical shape prior
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Applications — Part Ill

3D rodent brain segmentation in MRM

Regular prior (smoothness)

Hierarchical shape prior




Applications — Part Ill

3D rodent brain segmentation in MRM

e Quantitative comparisons: surface distances, relative
error of volume magnitude

Smoothness prior 4.35+2.17 0.22+0.12

Cerebellum Independent prior 1.74+1.18 0.05+0.02
Hierarchical prior 1.70+1.13 0.04+0.02

Smoothness prior 3.79+2.05 0.51+0.19

Striatum [\ qependent prior | 2.93+1.81 0.19+0.06
Hierarchical prior 1.37+£1.09 0.07+0.03

Smoothness prior 3.82+2.14 0.53+0.18

Hippocampus Independent prior 2.69+1.83 0.17+0.05
Hierarchical prior 1.22+1.05 0.0610.02

28



Thanks!

Questions and comments
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