Large Scale Content-based Image Retrieval

Shaoting Zhang
Xiang Yu

Content-based Image retrieval

 Given an input image, find relevant / similar ones in the database.

- Use local and global image features.
- Large scale image retrieval: find similar images from millions of training images.

Outline

Efficient Local Feature

- Vocabulary Tree
- City-Scale Landmark Identification
- Results and Problems

Efficient Global Feature

- GIST, Color Features, Small Code
- Corel 5K, UK bench, Results

Combination

- Motivation
- Graph Fusion
- Results and Discussions

Vocabulary Tree

- Extract descriptors (e.g., SIFT features).
- Hierarchical quantization instead of standard K-mean.
- Build inverted files with references to images containing an instance of that descriptor.
- Very efficient.

D. Nister and H. Stewenius, CVPR'06

City-Scale Landmark Identification

- Panorama images from San Francisco data.
- Application: query image taken with a smart phone.
 Then retrieve building image in database and its information.
- The largest set (1.7M).
- Perspective central and frontal images.
- Examples of query images

Devices, D. Chen, et.al., CVPR'11

Our Retrieval Results

Our Retrieval Results

Our Retrieval Results

Perspective Central Images

Perspective Frontal Images

Problems of Local Features

- Local similarity may not generate correct results.
- Potential solution: Consider to use global features.

Query Retrieval

Color, GIST, etc.

- RGB, LAB, HSV, 1D or 3D histogram.
- GIST (accumulating image statistics over the entire scene).
- Small code technique to accelerate the computation.

A. Oliva and A. Torralba, IJCV'01

A. Torralba, R. Fergus, Y. Weiss, CVPR'08

Small Code Technique

- PCA to reduce the dimension (960 bins -> 256 bins).
- Random rotation or optimized rotation.
- Binary quantization. Using Hamming distance.
- 960 floats -> 256 floats -> 256 bits (217 times smaller).

Corel 5k and UK bench

- Corel 5K: 50 categories, each category has 100 images. Leave-one-out for retrieval.
- Precision of Top-N retrievals.

Corel 5k and UK bench

- UK bench: 10200
 images. 2550 objects.

 Each one has four images.
- Evaluation: 4 x recall at the first four returned images, referred as N-S score (maximum = 4).

Results

- PCA tries to preserve L2 distance.
- GIST performs well using L2, while HSV prefers L1 or Bhattacharyya distance.
- Corel: we choose GIST. (VOC, 46.6%)
- UK: we choose HSV3D, NS = 3.17. (VOC, NS = 3.53)

Features	L1	L2	PCA	Binary	Random	ITQ
GIST	46.2%	45.3%	41.7%	33.1%	42.5%	40.6%
HSV	45.9%	31.5%			34.8%	
HSV3D	54.3%	35.8%			38.4%	

Combination

Motivation

Both global and local achieve good performance.

Dataset	Global	Local
Corel 5K	46.2%	46.6%
UK bench	3.17	3.53

- When one fails, the other may do well. For top-5 retrievals of Corel 5K dataset:
 - Global feature fails to retrieve any correct images in 1,566 (out of 5,000) queries. In these 1,566 cases, local does well in 403 (>=2 correct).
 - Local feature fails in 1,671, while global does well in 431.

Combination

Results

UK bench (NS score, state-of-the-art: 3.68):

Potential Applications

Medical Image Retrieval

Thanks! Questions and comments