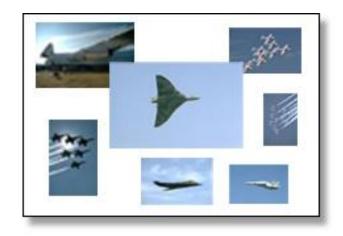
# Large Scale Content-based Image Retrieval

Shaoting Zhang
Xiang Yu



# Content-based Image retrieval

 Given an input image, find relevant / similar ones in the database.



- Use local and global image features.
- Large scale image retrieval: find similar images from millions of training images.

# **Outline**

#### Efficient Local Feature

- Vocabulary Tree
- City-Scale Landmark Identification
- Results and Problems

#### Efficient Global Feature

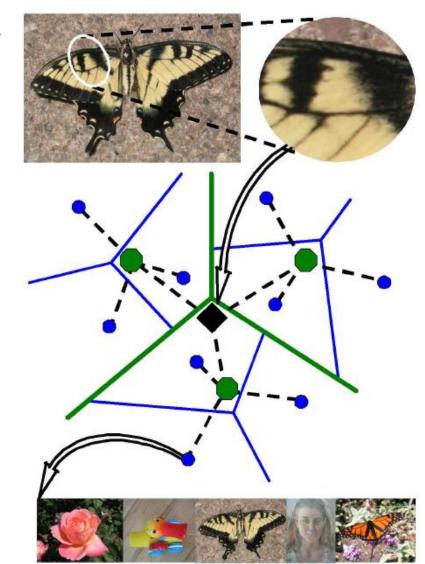
- GIST, Color Features, Small Code
- Corel 5K, UK bench, Results

#### Combination

- Motivation
- Graph Fusion
- Results and Discussions

#### Vocabulary Tree

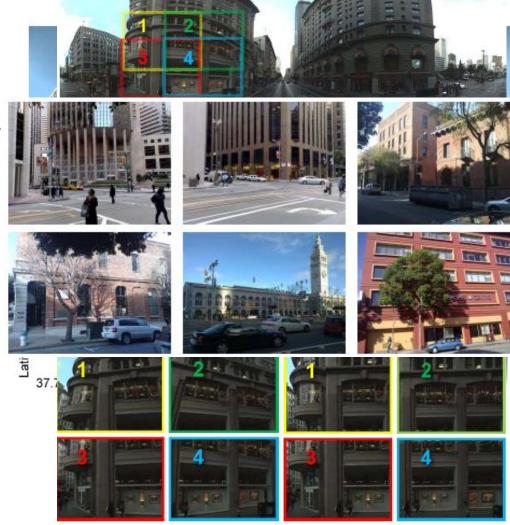
- Extract descriptors (e.g., SIFT features).
- Hierarchical quantization instead of standard K-mean.
- Build inverted files with references to images containing an instance of that descriptor.
- Very efficient.



D. Nister and H. Stewenius, CVPR'06

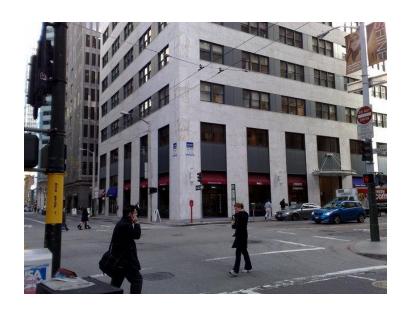
#### City-Scale Landmark Identification

- Panorama images from San Francisco data.
- Application: query image taken with a smart phone.
   Then retrieve building image in database and its information.
- The largest set (1.7M).
- Perspective central and frontal images.
- Examples of query images



Devices, D. Chen, et.al., CVPR'11

#### **Our Retrieval Results**









#### **Our Retrieval Results**



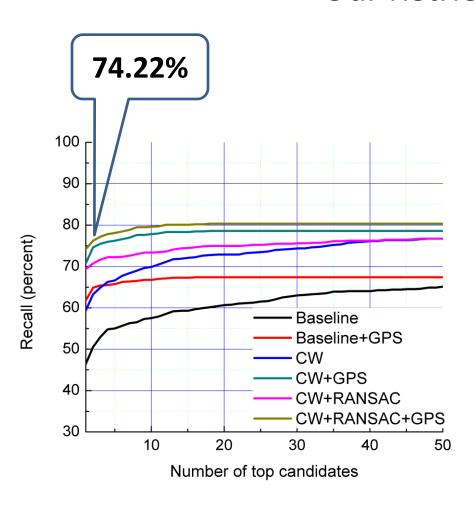


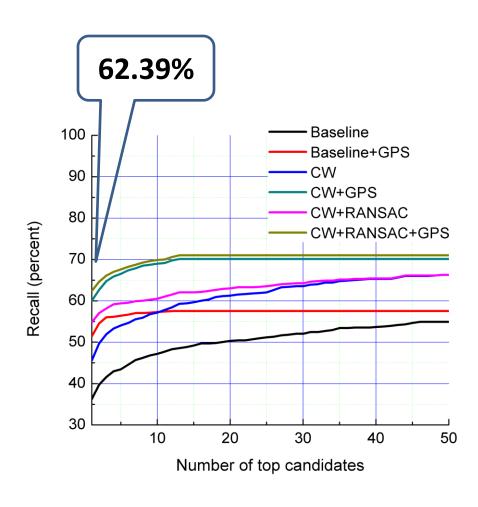






#### **Our Retrieval Results**





Perspective Central Images

Perspective Frontal Images

#### Problems of Local Features

- Local similarity may not generate correct results.
- Potential solution: Consider to use global features.





Query Retrieval

Color, GIST, etc.

- RGB, LAB, HSV, 1D or 3D histogram.
- GIST (accumulating image statistics over the entire scene).
- Small code technique to accelerate the computation.

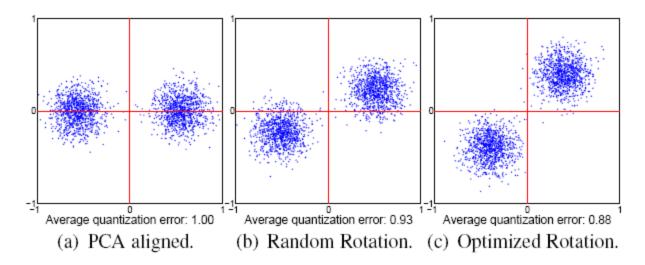


A. Oliva and A. Torralba, IJCV'01

A. Torralba, R. Fergus, Y. Weiss, CVPR'08

#### Small Code Technique

- PCA to reduce the dimension (960 bins -> 256 bins).
- Random rotation or optimized rotation.
- Binary quantization. Using Hamming distance.
- 960 floats -> 256 floats -> 256 bits (217 times smaller).



#### Corel 5k and UK bench

- Corel 5K: 50 categories, each category has 100 images. Leave-one-out for retrieval.
- Precision of Top-N retrievals.













#### Corel 5k and UK bench

- UK bench: 10200
   images. 2550 objects.

   Each one has four images.
- Evaluation: 4 x recall at the first four returned images, referred as N-S score (maximum = 4).



#### Results

- PCA tries to preserve L2 distance.
- GIST performs well using L2, while HSV prefers L1 or Bhattacharyya distance.
- Corel: we choose GIST. (VOC, 46.6%)
- UK: we choose HSV3D, NS = 3.17. (VOC, NS = 3.53)

| Features | L1    | L2    | PCA   | Binary | Random | ITQ   |
|----------|-------|-------|-------|--------|--------|-------|
| GIST     | 46.2% | 45.3% | 41.7% | 33.1%  | 42.5%  | 40.6% |
| HSV      | 45.9% | 31.5% |       |        | 34.8%  |       |
| HSV3D    | 54.3% | 35.8% |       |        | 38.4%  |       |

## Combination

#### Motivation

Both global and local achieve good performance.

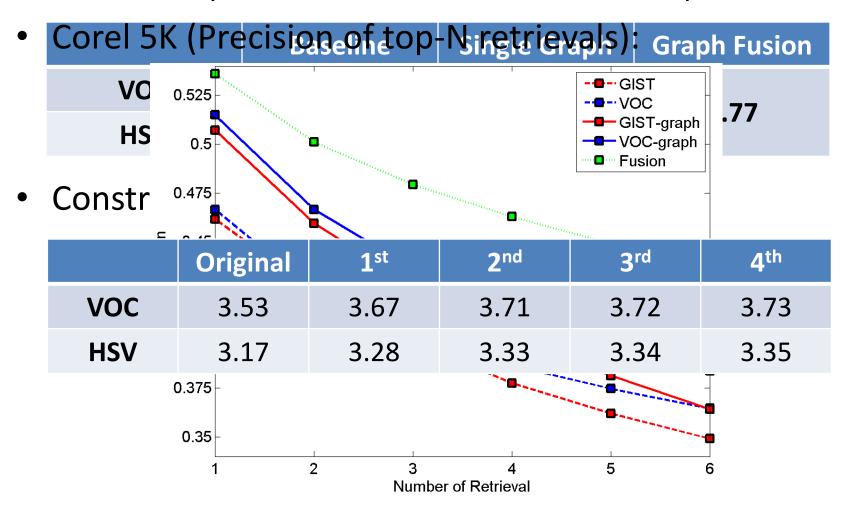
| Dataset  | Global | Local |
|----------|--------|-------|
| Corel 5K | 46.2%  | 46.6% |
| UK bench | 3.17   | 3.53  |

- When one fails, the other may do well. For top-5 retrievals of Corel 5K dataset:
  - Global feature fails to retrieve any correct images in 1,566 (out of 5,000) queries. In these 1,566 cases, local does well in 403 (>=2 correct).
  - Local feature fails in 1,671, while global does well in 431.

# Combination

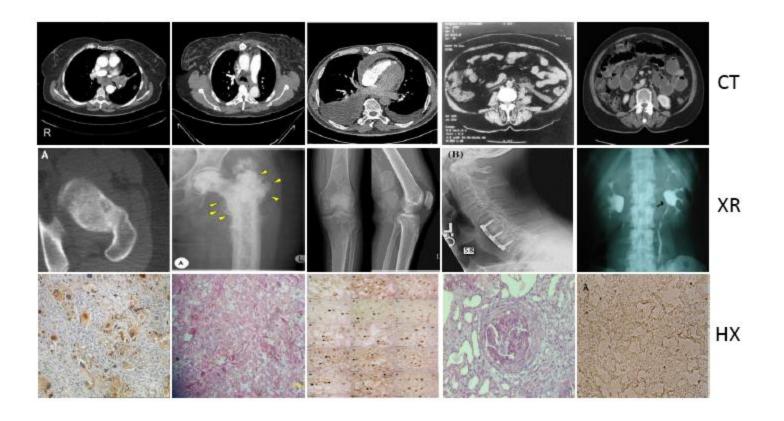
#### Results

UK bench (NS score, state-of-the-art: 3.68):



# **Potential Applications**

### Medical Image Retrieval



# Thanks! Questions and comments